NONNEGATIVE AND SKEW-SYMMETRIC PERTURBATIONS OF A MATRIX WITH POSITIVE INVERSE

GIUSEPPE BUFFONI

Abstract

Let A be a nonsingular matrix with positive inverse and B a nonnegative matrix. Let the inverse of $A+v B$ be positive for $0 \leq v<v^{*}<+\infty$ and at least one of its entries be equal to zero for $v=v^{*}$; an algorithm to compute v^{*} is described in this paper. Furthermore, it is shown that if $A+A^{\mathrm{T}}$ is positive definite, then the inverse of $A+v\left(B-B^{\mathbf{T}}\right)$ is positive for $0 \leq v<v^{*}$.

1. Introduction

Let

$$
\begin{equation*}
A+v B \tag{1}
\end{equation*}
$$

be an $n \times n$ real matrix, where A is a nonsingular matrix with positive inverse $([5,2,1]), B(B \neq 0)$ a nonnegative matrix and v a nonnegative real parameter,

$$
\begin{equation*}
A^{-1}>0, \quad B \geq 0, \quad B \neq 0, \quad v \geq 0 \tag{2}
\end{equation*}
$$

The parameter v may be considered as a measure of the size of the nonnegative perturbation $v B$ of the matrix A. Let

$$
\begin{equation*}
Z(v)=(A+v B)^{-1}=\left[z_{l j}(v)\right] . \tag{3}
\end{equation*}
$$

For $v=0$, we have $Z(0)=A^{-1}>0$; thus, $\operatorname{det}(A+v B) \neq 0$ and $Z(v)>0$ in a sufficiently small neighborhood of 0 . This paper addresses the problem of finding the largest, possibly infinite, number v^{*} such that $A+v B$ is nonsingular and $Z(v)>0$ in $\left[0, v^{*}\right)$. We will describe an algorithm (the iterative process (6)) to compute v^{*} if $v^{*}<+\infty$. In the case $v^{*}=+\infty$, the successive approximations defined by (6) form a sequence diverging monotonically to $+\infty$.

We shall consider also matrices of the type

$$
\begin{equation*}
C(v)=A+v\left(B-B^{\mathrm{T}}\right) \tag{4}
\end{equation*}
$$

here the matrix A is perturbed by a skew-symmetric matrix which may be written as $B-B^{\mathrm{T}}$ with $B \geq 0$. It will be shown that if $A+A^{\mathrm{T}}$ is positive definite, then $C^{-1}(v) \geq Z(v)>0$ in $\left[0, v^{*}\right)$, where Z is defined by (3).

[^0]Numerical calculations have been performed by using the matrix involved in the discrete analog of the integro-differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[p \frac{\partial u}{\partial x}\right]+q\left[u_{0}-u\right]+v \int_{0}^{1} K\left(x, x^{\prime}\right)\left[u_{0}\left(x^{\prime}\right)-u\left(x^{\prime}\right)\right] d x^{\prime} \tag{5}
\end{equation*}
$$

with boundary conditions $u(0)=u(1)=0$, where $p(x)>0, q(x) \geq 0$, $u_{0}(x) \geq 0$, and $K\left(x, x^{\prime}\right) \geq 0$. Equation (5) is a model for a spatially distributed community whose migration has both a random and a special deterministic component; more complicated models (n-species communities, nonlinear) can be obtained including birth-death processes, competition and predator-prey interactions [4]. A direct finite difference approach to (5) provides a discrete approximation \mathbf{u} of the steady state solution u satisfying an equation of the type $(A+v B) \mathbf{u}=\mathbf{f} \geq 0$, where $A+v B$ is of type (2); the positivity of its inverse assures the positivity and the stability of \mathbf{u}.

2. The inverse of $A+v B$

Lemma 1. Assume (2) and let $\operatorname{det}(A+v B) \neq 0$ and $Z(v)>0$, with $Z(v)$ as defined in (3). Then $Z^{\prime}(v)<0$ and $Z^{\prime \prime}(v)>0$.
Proof. From the identity $(A+v B) Z(v)=I$ we obtain

$$
Z^{\prime}=-Z B Z, \quad Z^{\prime \prime}=-2 Z B Z^{\prime}=2 Z B Z B Z,
$$

where $Z^{\prime}=d Z / d v=\left[z_{l \jmath}^{\prime}\right]$ and $Z^{\prime \prime}=d Z^{\prime} / d v=\left[z_{l j}^{\prime \prime}\right]$. As $B \geq 0, B \neq 0$, and $Z(v)>0$, there follows $Z^{\prime}(v)<0$ and $Z^{\prime \prime}(v)>0$.

Lemma 2. Under the assumptions of Lemma 1 , let v_{α} be the largest number such that $\operatorname{det}(A+v B) \neq 0$ in the interval $\left[0, v_{\alpha}\right)$. Then, either $v_{\alpha}=+\infty$, or an element of $Z(v)$ must change sign in $\left[0, v_{\alpha}\right)$.
Proof. As $v \longrightarrow v_{\alpha}$, at least one entry of $Z(v)$ must become infinite. Otherwise, in any interval $\left[0, v_{\beta}\right.$) where $Z(v)>0$ we have $Z^{\prime}(v)<0$ (Lemma 1); therefore, $Z(v)$ is bounded in $\left[0, v_{\beta}\right)$,

$$
0<Z(v) \leq Z(0)=A^{-1}
$$

It follows that $v^{*}=\max v_{\beta} \leq v_{\alpha}$, with strict inequality if $v^{*}<+\infty$, because $0 \leq Z\left(v^{*}\right) \leq A^{-1}$. When $v^{*}<+\infty$, the thesis follows from $Z^{\prime}\left(v^{*}\right) \leq 0$ and Lemma 1 (note that the entries $z_{i j}(v)$ cannot vanish identically).
Theorem 1. Let v^{*} be the largest, possibly infinite, number such that $Z(v)>0$ in $\left[0, v^{*}\right)$. Then v^{*} is the limit of the sequence $\left\{v_{k}\right\}$ given by

$$
\begin{equation*}
v_{k+1}=v_{k}+\min _{l, \jmath ; w_{k i \jmath}>0} z_{k l \jmath} / w_{k i j}, \quad k=0,1,2, \ldots, n ; v_{0}=0 \tag{6}
\end{equation*}
$$

where $Z_{k}=Z\left(v_{k}\right)=\left[z_{k i j}\right], W_{k}=-Z^{\prime}\left(v_{k}\right)=Z_{k} B Z_{k}=\left[w_{k i j}\right]$.
Proof. Let $v_{l j}^{*}$ be the smallest value of v for which $z_{i j}(v)=0$, if such a value exists, or $+\infty$ otherwise. We have $v^{*}=\min _{i, j} v_{i j}^{*}$. In $\left[0, v^{*}\right)$, the matrix $Z(v)$ does not have singularities (Lemma 2) and its entries are strictly
decreasing and convex functions of v (Lemma 1). These regularity conditions on the entries $z_{l j}(v)$ allow us to obtain the sequence $\left\{v_{k}\right\}$, given by (6), as follows: we compute the Newton steps for the elements of the equation $Z(v)=$ 0 and use the smallest of them to update v.

The first iteration, with starting value $v_{0}=0$, produces the equations $z_{i j}(0)+$ $v z_{i j}^{\prime}(0)=0$, where $z_{i j}(0)>0$ and $z_{i j}^{\prime}(0)<0$. The smallest solution of these equations is the first approximation v_{1} in (6) and it is the largest value of v for which

$$
Z(0)+v Z^{\prime}(0)=A^{-1}-v A^{-1} B A^{-1} \geq 0
$$

As $Z(v)>Z(0)+v Z^{\prime}(0)$ for $0<v<v^{*}$, we have $v_{1}<v_{i j}^{*}, i, j=$ $1,2, \ldots, n$; therefore, $0<v_{1}<v^{*}$ and $Z_{1}>0, W_{1}>0$.

The successive approximations v_{k} are defined as follows. Suppose we have computed the approximation v_{k}, for some $k>0$, for which we have $0<$ $v_{k}<v^{*}, Z_{k}>0, W_{k}>0$. We compute the Newton steps starting from the value v_{k}, common to all the equations $z_{l j}(v)=0$; this produces the equations $z_{l j}\left(v_{k}\right)+\left(v-v_{k}\right) z_{l \jmath}^{\prime}\left(v_{k}\right)=0$. The approximation v_{k+1} (the smallest solution of these equations) is the largest value of v for which

$$
Z\left(v_{k}\right)+\left(v-v_{k}\right) Z^{\prime}\left(v_{k}\right)=Z_{k}-\left(v-v_{k}\right) W_{k} \geq 0
$$

and it is given by (6). As $Z(v)>Z\left(v_{k}\right)+\left(v-v_{k}\right) Z^{\prime}\left(v_{k}\right)$ for $v_{k}<v<v^{*}$, we have $v_{k+1}<v_{l j}^{*}, i, j=1,2, \ldots, n$; therefore $v_{k}<v_{k+1}<v^{*}$ and $Z_{k+1}>0, W_{k+1}>0$. We conclude that the sequence $\left\{v_{k}\right\}$ is increasing, bounded from above by v^{*} if $v^{*}<+\infty$, and convergent to v^{*} (note that $\left\{v_{k}\right\}$ cannot converge to a limit $v_{1}^{*}<v^{*}$ since this would imply $\left(v_{k+1}-v_{k}\right) \longrightarrow$ $\left.\min _{l j} z_{l j}\left(v_{1}^{*}\right) /\left|z_{l j}^{\prime}\left(v_{1}^{*}\right)\right|>0\right)$.

When $v^{*}=+\infty$, all the entries $z_{i j}(v)$ are positive, strictly decreasing, and convex functions of $v \in[0,+\infty$) (the only possible solution of each equation $z_{i j}(v)=0$ is $\left.v^{*}=+\infty\right)$. If the sequence $\left\{v_{k}\right\}$ were bounded, then it would be convergent: $v_{k} \rightarrow v_{1}^{*}<+\infty$; as above, we would have $\left(\dot{v}_{k+1}-v_{k}\right) \rightarrow$ constant $>$ 0 . Thus, $\left\{v_{k}\right\}$ is not bounded and it is diverging monotonically to $+\infty$.

Remarks. (a) It is possible to show that the sequence $\left\{v_{k}^{\prime}\right\}$ given by

$$
v_{k+1}^{\prime}=v_{k}^{\prime}+\min _{i, J ; w_{01 \jmath}>0} z_{k l \jmath} / w_{0 l \jmath}, \quad k=0,1,2, \ldots ; v_{0}^{\prime}=0
$$

is convergent to v^{*}, if $v^{*}<+\infty$, or divergent to $+\infty$ otherwise.
(b) Only for very small n (the first few integers) can we obtain the analytic expressions of the entries $z_{i j}(v) \quad(i, j=1,2, \ldots, n)$ and find their zeros to evaluate v^{*}. The application of the iterative process (6) involves the numerical computation of the inverses Z_{k}, and each iteration requires $O\left(n^{3}\right)$ operations; however, the method has been applied successfully with n equal to 30, 40, and 50 (for example, by using matrices from one-dimensional boundary value problems).
(c) We can show the quadratic convergence [3, p. 260] of the process (6) when $v^{*}<+\infty$ and $Z^{\prime}\left(v^{*}\right)>0$. We introduce in (6) $z_{k i j}$ obtained from Taylor's formula

$$
z_{l j}\left(v^{*}\right)=z_{k i j}-\left(v^{*}-v_{k}\right) w_{k i j}+\frac{1}{2}\left(v^{*}-v_{k}\right)^{2} z_{l j}^{\prime \prime}\left(v_{k l j}\right),
$$

where $v_{k} \leq v_{k i j} \leq v^{*}$. After some manipulations we have

$$
v^{*}-v_{k+1}=\min _{i, J ; w_{k, \prime}>0}\left[\frac{1}{2}\left(v^{*}-v_{k}\right)^{2} z_{i j}^{\prime \prime}\left(v_{k i j}\right)-z_{i j}\left(v^{*}\right)\right] / w_{k i j}
$$

thus, as $z_{l j}\left(v^{*}\right) \geq 0$ and $w_{k i \jmath}>0$, it follows that

$$
s_{k+1} \leq \max _{i, j ; w_{k i j}>0} z_{l j}^{\prime \prime}\left(v_{k i j}\right) / w_{k i j} \rightarrow \max _{i, j} z_{i j}^{\prime \prime}\left(v^{*}\right) /\left|z_{i j}^{\prime}\left(v^{*}\right)\right|,
$$

where

$$
\begin{equation*}
s_{k+1}=\left(v^{*}-v_{k+1}\right) /\left(v^{*}-v_{k}\right)^{2} \tag{7}
\end{equation*}
$$

3. The inverse of $C(v)=A+v\left(B-B^{\mathrm{T}}\right)$

Theorem 2. Let the symmetric matrix $A+A^{\mathrm{T}}$ be positive definite. Then, in $\left[0, v^{*}\right)$ the spectral radius h of the nonnegative matrix

$$
\begin{equation*}
H(v)=v Z(v) B^{\mathrm{T}} \tag{8}
\end{equation*}
$$

is less than 1 , and $C^{-1}(v) \geq Z(v)>0$.
Proof. The matrix $C(v)$ given by (4) is now written as

$$
C(v)=(A+v B)[I-H(v)],
$$

where $H(v)$ is given by (8). In $\left[0, v^{*}\right)$ we have $Z(v)>0$; it follows that $C^{-1}(v) \geq Z(v)>0$ if the spectral radius $h(v)=r(H)$ of the nonnegative matrix $H(v)$ is less than 1 [5, p. 83]. To the spectral radius h there corresponds an eigenvector $\mathbf{u} \geq 0$; from the eigenvalue equation $v B^{\mathrm{T}} \mathbf{u}=h(A+v B) \mathbf{u}$ we obtain

$$
h=v \mathbf{u}^{\mathrm{T}} B \mathbf{u} /\left(\mathbf{u}^{\mathrm{T}} A \mathbf{u}+v \mathbf{u}^{\mathrm{T}} B \mathbf{u}\right)
$$

We have $\mathbf{u}^{\mathrm{T}} A \mathbf{u}=\frac{1}{2}\left[\mathbf{u}^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right) \mathbf{u}\right]>0$, because $A+A^{\mathrm{T}}$ is assumed positive definite. Thus, as $v \geq 0, \mathbf{u} \geq 0, B \geq 0$, it follows that $h<1$.
Remarks. By means of simple examples it is possible to show that:
(a) The condition $A+A^{\mathrm{T}}$ positive definite is not necessary to have $h(v)<$ $1,0 \leq v<v^{*}$.
(b) The condition $H(v) \geq 0,0 \leq v<v^{*}$, is not sufficient by itself to have $h(v)<1$.

4. Numerical results

As a sample problem we use the matrix $A+v B$ obtained from a finite difference approximation to (5) using central differences and the trapezium rule.

Here we present the results obtained by assuming in (5) that $p=1, q=0$, and $K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2}\right.$) (sample problem 1). In this case, A is a Stieltjes matrix [5, p. 85] and B is a positive matrix. The inverses Z_{k} are computed by means of the routine LINV2F of the IMSL Library. The results (double-precision computation) are shown in Table 1. The quantities s_{k}, given by (7), tend to a constant value confirming quadratic convergence. Values of v greater than v^{*}, for which some computed entries of $Z(v)$ are less than zero are reported in the row *.

Table 1
Values of v_{k} and of s_{k} for the sample problem 1 for different values of the mesh spacing $1 / \mathrm{m}$.

$m=30$				$m=40$		$m=50$	
k	v_{k}	s_{k}	v_{k}	s_{k}	v_{k}	s_{k}	
0	0.		0.		0.		
1	5.145497	0.0658	5.076475	0.0678	5.035965	0.0690	
2	8.172000	0.0491	8.018864	0.0496	7.929456	0.0499	
3	8.820264	0.0505	8.633288	0.0510	8.524586	0.0517	
4	8.842959	0.0508	8.653839	0.0514	8.543958	0.0517	
5	8.842985	0.0508	8.653861	0.0513	8.543978	0.0516	
6	8.842985		8.653861		8.543978		
$*$	8.85		8.66		8.55		

Table 2

Values of v_{k} and of s_{k} for the sample problem 2 for different values of the mesh spacing $1 / \mathrm{m}$.

$m=30$				$m=40$		$m=50$	
k	v_{k}	s_{k}	v_{k}	s_{k}	v_{k}	s_{k}	
0	0.		0.		0.		
1	0.411695	1.8439	0.299168	2.5543	0.234883	3.2660	
2	0.471457	0.2874	0.341517	0.3880	0.267634	0.4885	
3	0.472521	0.2899	0.342236	0.3912	0.268175	0.4924	
4	0.472521	0.2881	0.342236	0.3884	0.268175	0.5178	
5	0.472521		0.342236		0.268175		
$*$	0.48		0.35		0.27		
$* *$	0.49		0.36		0.28		

Now we consider the matrix $C(v)=A+v\left(B-B^{\mathrm{T}}\right)$ obtained by assuming in (5) that $p=1, q=0$, and $K\left(x, x^{\prime}\right)=x-x^{\prime}$ (sample problem 2). Here the matrix B is the nonnegative contribution due to $K\left(x, x^{\prime}\right)$ for $x \geq x^{\prime}$. The
results are shown in Table 2. Values of v greater than v^{*}, for which some computed entries of $Z(v)$ and of $C^{-1}(v)$ are less than zero are reported in the rows $*$ and $*^{*}$, respectively. We note that $\left[0, v^{*}\right)$ is a sufficiently good approximation of the interval in which $C^{-1}(v)>0$.

Acknowledgments

I wish to thank Professor Walter Gautschi and a referee for their criticism and suggestions.

Bibliography

1. G. Buffoni and A. Galati, Matrici essenzialmente positive con inversa positiva, Boll. Un. Mat. Ital. (4) 10 (1974), 98-103.
2. K. Fan, Topological proofs for certain theorems on matrices with non-negative elements, Monatsh. Math. 62 (1958), 219-237.
3. J. R. Rice, Numerical methods, software and analysis, McGraw-Hill, 1983.
4. Y. M. Svirezhev and D. O. Logofet, Stability of biological communities, MIR, Moscow, 1983.
5. R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N. J. 1965.
enea crea S. Teresa, C. P. 316, I-19100 La Spezia, Italy

[^0]: Received July 26, 1988; revised November 23, 1988 and January 18, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 65F30.

